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Bayesian Sparse Multivariate Regression with
Asymmetric Nonlocal Priors for Microbiome

Data Analysis

Kurtis Shuler∗, Marilou Sison-Mangus† and Juhee Lee‡

Abstract. We propose a Bayesian sparse multivariate regression method to model
the relationship between microbe abundance and environmental factors for micro-
biome data. We model abundance counts of operational taxonomic units (OTUs)
with a negative binomial distribution and relate covariates to the counts through
regression. Extending conventional nonlocal priors, we construct asymmetric non-
local priors for regression coefficients to efficiently identify relevant covariates and
their effect directions. We build a hierarchical model to facilitate pooling of infor-
mation across OTUs that produces parsimonious results with improved accuracy.
We present simulation studies that compare variable selection performance under
the proposed model to those under Bayesian sparse regression models with asym-
metric and symmetric local priors and two frequentist models. The simulations
show the proposed model identifies important covariates and yields coefficient es-
timates with favorable accuracy compared with the alternatives. The proposed
model is applied to analyze an ocean microbiome dataset collected over time to
study the association of harmful algal bloom conditions with microbial communi-
ties.

Keywords: count data, harmful algal bloom, microbiome, negative binomial,
next-generation sequencing, nonlocal prior, stochastic search variable selection.

1 Introduction

Microbiome data are widely used in exploring microbial communities across many disci-
plines including medicine, toxicology, immunology, ecology and environmental sciences
(Clooney et al., 2016; Knight et al., 2017; Aguiar-Pulido et al., 2016). High-throughput
sequencing of 16S ribosomal RNA (rRNA) gene amplicons has enabled thorough pro-
filing of the genetic contents of microbial communities, and provided opportunities to
understand the interactions of microbes with their environment and their hosts. Es-
timating changes in microbe abundance in the community with respect to changes in
candidate predictors can be formulated as a multivariate regression problem. When
there are many candidate variables, some variables may be redundant or irrelevant.
Variable selection procedures are commonly used to identify biologically interpretable
and predictive covariates, and subsequently to quantify their associations with microbial
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Figure 1: [Ocean Microbiome Data] Panels (a) and (b): Scatterplots of selected envi-
ronmental factors from the ocean microbiome dataset. Panel (c): Heatmap of the ocean
microbiome OTU counts. Darker shades indicate larger counts.

communities. As a specific example, we consider the ocean microbiome dataset in Lee
and Sison-Mangus (2018) that consists of 263 operational taxonomic units (OTUs) in
150 samples collected at 54 time points. Ten candidate predictor variables, including
abundance levels of harmful algal bloom species (HAB species) as well as nutrient and
physical variables, were recorded to investigate their potential associations with micro-
bial communities. Nutrients such as ammonia, phosphate, and silicate in seawater are
closely related to each other, as shown in Figure 1(a) and (b), because they are con-
trolled by biological cycling in the ocean. In such contexts, parsimonious models that
include only a subset of the covariates truly associated with microbial abundances are
preferable. Microbiome data is typically high-dimensional, sparse, and over-dispersed;
and sampling procedures can introduce complex dependencies in the resulting data.
Constructing a sparse model that allows a flexible dependence structure across samples
is crucial to obtain a better understanding of the underlying biological processes.

An OTU represents a microbial taxa based on DNA sequence similarity of taxo-
nomic marker genes, such as the 16S rRNA gene, and microbiome data is typically
summarized with an OTU abundance table in a J × N matrix, where J and N are
the numbers of OTUs and samples, respectively. Such data presents a number of ana-
lytical challenges. The elements of the table are OTU counts which can be used as a
proxy for taxa abundances in a sample. However, the raw OTU counts depend on the
amount of effort put into the sequencing procedure for each sample (the “sequencing
depth”) and do not reflect absolute OTU abundances in the environment of interest,
making abundance comparisons more difficult. For statistical analysis OTU counts are
commonly converted to normalized counts (relative abundances) by dividing the raw
counts by the total sample count or by normalizing factors estimated through some
other method (Witten, 2011; Zhang et al., 2017). While appealing for their simplicity,
these normalization procedures may introduce bias in parameter estimation, and their
inflexibility can make inference less robust (Li et al., 2017). Moreover, microbiome data
typically has a large J , and building models that can adequately limit false positive
rates but still can identify significant relationships between OTU abundance and en-
vironmental factors is challenging. In addition, the variance of OTU counts tends to
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be greater than the variance of multinomial or Poisson data, and a large proportion of
OTUs have negligible counts in most of the samples.

Many statistical methods have been proposed for microbiome data analysis, includ-
ing models to characterize community structure and to identify relationships between
OTUs and covariates. For association studies, Poisson, multinomial, and negative bi-
nomial models are popular for modeling OTU counts, oftentimes with the distribu-
tion means related to covariates through a link function (Paulson et al., 2013). Some
of those works consider each OTU individually, ignoring community structure (e.g.,
edgeR in Robinson et al. (2010) and negative binomial mixed model (BhGLM) in Zhang
et al. (2017)). More recently, approaches of jointly modeling all OTUs, mostly through
a multinomial distribution, have been developed to improve inference by borrowing
strength across OTUs. See Chen and Li (2013); Xia et al. (2013); Grantham et al.
(2017); Wadsworth et al. (2017); Ren et al. (2017a,b); Mao et al. (2017); Lee and Sison-
Mangus (2018) among many others. Wadsworth et al. (2017) and Mao et al. (2017) used
a multinomial-Dirichlet (MD) regression model to relate a set of covariates to abundance
counts. Wadsworth et al. (2017) used spike-and-slab mixture priors to identify signifi-
cantly associated covariates. Mao et al. (2017) exploited a graph with the MD regression
model to efficiently detect difference in microbiome composition across different groups.
Ren et al. (2017a,b) proposed a Bayesian nonparametric approach for microbiome data
analysis using a multinomial likelihood and a Dirichlet process prior. Xia et al. (2013)
assumed a logistic normal multinomial model and used a group �1 penalized likelihood
to estimate coefficients with variable selection. Chen and Li (2013) also used a sparse
group �1 penalty with a MD regression model. Lee and Sison-Mangus (2018) proposed
a Bayesian regression model using a negative binomial likelihood with a Laplace prior
for regression coefficients.

To enhance the search for an optimal subset of variables, we build on the model in Lee
and Sison-Mangus (2018) and develop a Bayesian sparse multivariate regression model
equipped with a variable selection method using asymmetric nonlocal priors (ANLPs),
called ANLP-SB. We model counts Yij of OTU j in sample i with a negative binomial
distribution and utilize a log link function to relate the mean counts μij to covariates.
We let log(μij) = gij+x′

iβj , where gij represents the baseline mean count (intercept) of
OTU j in sample i and βj is a vector of regression parameters of size P for OTU j. The
inferential goal is the estimation of a J×P regression coefficient matrix, where the βjps
are sparse and possibly interrelated across OTUs. Motivated in part by the particular
interest that biologists often place on identifying the directions of covariate effects on
OTU abundance in microbiome studies, we construct ANLPs using a truncation mixture
with three components for βjp, each for exactly zero, positive and negative effects, where
the mixture weights are π�

p = (π�
p0, π

�
p1, π

�
p2). While assuming a point mass at zero for

βjp = 0, we assume normal distributions truncated below and above at latent trunca-
tion parameter ιp for positive and negative values of βjp. The marginal prior for nonzero
βjp after integrating out ιp defines a valid NLP (Rossell and Telesca, 2017) and, due
to π�

p1 �= π�
p2, our NLP is asymmetric. NLPs place zero probability density on {0} (see

Figure 2 for an illustration) and are competitive against a suite of other variable selec-
tion techniques (Johnson and Rossell, 2012; Wu, 2016; Shin et al., 2018). Furthermore,
NLPs improve both shrinkage and variable selection in high-dimensional estimation set-
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tings (Rossell and Telesca, 2017). In our ocean microbiome data, the abundance levels
of many OTUs may have similar relationships with environmental factors including nu-
trient concentration and phytoplankton abundances inherently, because these variables
are trophically-linked. Statistical inference can thus be improved by combining the re-
gression problems of individual OTUs through a hierarchical model. The hierarchical
structure enables borrowing of information across OTUs, increasing power for detecting
important covariates and estimating their effects. We compare the proposed ANLPs
to the corresponding asymmetric local priors (ALPs) that assume normal distributions
truncated below and above at zero for βjp > 0 and βjp < 0, and conventional symmetric
local priors (SLPs) that assume N(0, σ2

p) for βjp �= 0. Simulation studies and real data
analysis show favorable performance of ANLPs in identifying relevant covariates and
coefficient estimation. For the baseline mean count, we decompose gij into terms, each
of which accounts for differences in sequencing depth, variability in baseline OTU abun-
dances, and dependence across samples within an OTU. The model based normalization
through gij alleviates some pitfalls of using plug-in normalizing factors, and can further
improve identification of important covariates and estimation of their effects.

The remainder of the paper is organized as follows. Section 2 describes the proposed
ANLP-SB model. Section 3 reports simulation studies to evaluate ANLP-SB and com-
pare it to alternative models including Bayesian regression models with the ALP, SLP,
and likelihood based methods. Section 4 summarizes analyses of the ocean microbiome
dataset, and we close with a discussion in Section 5.

2 Probability Model

2.1 Sampling Model

Samples are collected at n different time points, 0 < t1 < t2 < . . . < tn < T with
Ki replicates at time point ti, i = 1, . . . , n; and a sample is indexed by ti and k.
N =

∑n
i=1 Ki is the total number of samples. We let Y j = [Yt11j , . . . , YtnKnj ]

′ represent
a N -dimensional response vector of OTU j, where Ytikj denotes the count of OTU j
in sample (ti, k). Let xti = [xti1, . . . , xtiP ]

′ be a P -dimensional vector of covariates,
where xtip is the value of covariate p at time point ti. In the remainder of the model
description we suppress index i for simpler notation. For OTU j, we consider a negative
binomial (NB) regression model,

Ytkj | xt, μtkj , sj
indep∼ NB(μtkj(xt), sj), j = 1, . . . , J. (1)

The model in (1) is parameterized such that the mean and variance of Ytkj are μtkj

and μtkj + μ2
tkjsj , respectively. We consider a log-linear model log(μtkj) = gtkj +β′

jxt,
where gtkj represents the baseline mean count of OTU j in sample (t, k) and βj =
[βj1, . . . , βjP ]

′ is a P -dimensional regression coefficient vector for OTU j. The second
term β′

jxt explains the dependence of μtkj on xt, where each effect acts multiplicatively
on μtkj . Our principal inferential interest lies in the estimation of the J × P matrix of
coefficients βjp. The baseline mean count gtkj accounts for different sample total counts
and different baseline abundances across OTUs. gtkj may have additional dependence
across samples in an OTU, such as temporal dependence in data collected over time.
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sj > 0 is an unknown over-dispersion parameter for OTU j. Unlike a Poisson model for
which the variance is equal to the mean, the NB model has an extra component μ2

tkjsj
in the variance. For count data such as next generation sequencing (NGS) data, it is
common that the observed variance exceeds the assumed variance of the multinomial
or Poisson distributions, and the negative binomial distribution is used as a popular
alternative to accommodate overdispersion of counts (e.g. Robinson et al. (2010); Zhang
et al. (2017)). In the next section we develop models for βj , gtkj and sj .

2.2 Prior

Covariate Effects To achieve a model with parsimony and good predictive power, we
build a prior model for βj , j = 1, . . . , J by employing a variable selection approach. To
effectively combine J related regression problems, we extend NLPs for βj and construct
ANLPs using truncation mixtures. For j = 1, . . . , J and p = 1, . . . , P , let

βjp | π�
p, σ

2
p, ιp

indep∼ π�
p0I(βjp = 0) + π�

p1

φ(βjp/σp)

σp{1− Φ(ιp)}
I

(
βjp

σp
> ιp

)

+ π�
p2

φ(βjp/σp)

σpΦ(−ιp)
I

(
βjp

σp
< −ιp

)
, (2)

where φ(·) and Φ(·) represent the pdf and cdf of the standard normal distribution,
respectively, I(β ∈ A) is a binary indicator function taking the value 1 if β ∈ A or
0 otherwise, and ιp > 0 is a truncation parameter. As opposed to a conventional ap-
proach that has two mixture components for variable selection, the model in (2) has
three components, each of which represents the cases of no, positive, and negative ef-
fects. We let π�

p = (π�
p0, π

�
p1, π

�
p2) be a mixture weight vector with

∑2
q=0 π

�
pq = 1 and

0 < π�
pq < 1, q = 0, 1, 2. The truncation parameter ιp can be viewed as a practical signif-

icance threshold for the pth covariate. For any βjp �= 0 the signal-to-noise ratio |βjp| /σp

is greater than ιp. The mixture model in (2) can be represented with latent indicator
variables, γjp ∈ {0, 1, 2}, where the values of {0, 1, 2} indicate the events of {βjp = 0},
{βjp/σp > ιp} and {βjp/σp < −ιp}, respectively. We let P(γjp = q) = π�

pq, q = 0, 1, 2. If
γjp = 0, βjp is exactly equal to 0, meaning that covariate p is irrelevant or redundant
to modeling counts of OTU j. Covariates with γjp �= 0 are important variables selected
for modeling and have large effects following truncated normal distributions. After in-
tegrating out γjp, we recover the prior for βjp in (2). We will specify priors for ιp and
πp. The indicator vector γj = (γj1, . . . , γjP ) defines a model for OTU j that contains
only βjp with γjp �= 0. The estimation of γj can be viewed as a model selection problem

and (2) assigns a priori probability
∏P

p=1

∏2
q=0(π

�
pq)

I(γjp=q) to a model defined by γj .

Remark 2.1. Consider a model with γj for OTU j. Let β�
j denote a vector of βjp with

γjp �= 0 only. Given γj, the joint prior of β�
j can be written as

P(β�
j | γj , δ, ι) =

P∏
p=1;γjp �=0

{
πp1

φ(βjp/σp)

σp{1− Φ(ιp)}
I

(
βjp

σp
> ιp

)

+ πp2
φ(βjp/σp)

σpΦ(−ιp)
I

(
βjp

σp
< −ιp

)}
, (3)
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Figure 2: Plot of the asymmetric nonlocal prior density function P(β�
jp | π�) (black,

solid) and its corresponding asymmetric local prior density function (blue, dotted).
π�
p = (0.4, 0.36, 0.24) and ιp ∼ Gamma(2.5, 10) are assumed.

where πpq = π�
pq/(1 − π�

p0), q = 1, 2, δ = {σ2
p,πp, p = 1, . . . , P}, and ι = {ιp, p =

1, . . . , P}. We observe P(β�
j | γj , δ, ι) ∝ d(β�

j )P
L(β�

j | γj , δ), where a local prior (LP)

PL(β�
j | γj , δ) =

P∏
p=1;γjp �=0

{
πp1

φ(βjp/σp)

σp{1− Φ(0)} I

(
βjp

σp
> 0

)

+ πp2
φ(βjp/σp)

σpΦ(0)
I

(
βjp

σp
< 0

)}
, (4)

and a penalty term d(β�
j ) =

∏P
p=1;γjp �=0 I(|βjp|/σp > ιp). Following Corollary 1 of

Rossell and Telesca (2017), the prior P(β�
j | γj , δ) =

∫
P(β�

j | γj , δ, ι)P(ι)dι defines
a valid nonlocal prior (NLP) if P(ι) is absolutely continuous. We call the priors in
(3) and (4) asymmetric nonlocal priors (ANLPs) and asymmetric local priors (ALPs),
respectively.

Figure 2 illustrates an example of the ANLP with a gamma prior for ιp (black solid
line). In contrast with the corresponding ALP (blue dotted line), the ANLP separates
the hypotheses βjp = 0 vs βjp �= 0 by assigning small probability to values of βjp close
to zero. Furthermore, ANLPs assign different weights to positive and negative values
of β�

jp. Under the NLP, the probability assigned to a model that contains spurious
βjp converges to 0 as the sample size grows (Johnson and Rossell, 2012; Wu, 2016;
Rossell and Telesca, 2017). The penalty term d(β�

j ) facilitates model selection (i.e.,
estimation of γj), and NLPs improve the accuracy of βj estimates compared to LPs.

We assume ιp
iid∼ Gamma(aι, bι) with fixed aι and bι. In (2), π�

p0 serves as the rate
at which the coefficients βjp are exactly zero in the J regression problems. We let

π�
p0

iid∼ Be(aπ0, bπ0). We assume the conditional probability of having a positive effect

given a covariate is identified as important, πp1
iid∼ Be(aπ1, bπ1) with πp2 = 1 − πp1.

Priors on π�
p provide an automatic multiplicity correction in variable selection (Scott

and Berger, 2010). Following Rossell and Telesca (2017), we let aπ0 = P and bπ0 = 1,
implying the prior inclusion odds E((1−π�

p0)/π
�
p0) are 1/(P−1). From simulation studies,
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we found that with larger P , an informative prior on π�
p0 favoring very large values (i.e.,

aπ0 � bπ0) yields better performance. We let σ2
p

iid∼ IG(aσ, bσ) with fixed aσ and bσ.
Parameters σ2

p, π
�
p and ιp allow variable specific selection processes. The model can

easily be modified to use common σ2, π� and ι for all covariates if the problem domain
does not demand this additional complexity. The hierarchical model construction for
βjp through priors on ιp, π

�
p and σ2

p facilitates pooling information across OTUs, and
improves accuracy of the inference in detecting a parsimonious association between
OTUs and covariates, especially for OTUs having small counts in many samples. For
example, a large value of π�

p1 implies positive effect on the abundance (i.e., γjp = 1)
of most OTUs and the posterior inference on π�

p1 is informed from all OTUs through
the hierarchical structure. In this fashion, the model structure incorporates biological
knowledge that environmental factors may have, on average, similar effect directions on
OTU abundances.

Baseline Mean Counts We next construct a model for the baseline mean counts gtkj
similar to Lee and Sison-Mangus (2018). We first decompose gtkj = rtk+α0j+αtj , where
terms rtk, α0j and αtj account for different library sizes, different baseline abundances
between OTUs, and additional dependence in abundances of an OTU across samples,
respectively. Due to its multiplicative structure, the individual terms in gtkj are non-
identifiable, whereas gtkj and βj are identifiable. Instead of fixing some terms, we let all
the terms be random, and we use distributions with some moment constraints as priors
for rtk and α0j to circumvent poor convergence in posterior Markov Chain Monte Carlo
(MCMC) simulation. Specifically, we consider the mean-constrained distribution in Li
et al. (2017) for rtk and α0j ;

rtk
iid∼

Lr∑
�=1

ψr
�

{
wr

�N(η
r
� , u

2
r) + (1− wr

� )N

(
υr − wr

�η
r
�

1− wr
�

, u2
r

)}
, (5)

α0j
iid∼

Lα∑
�=1

ψα
�

{
wα

� N(η
α
� , u

2
α) + (1− wα

� )N

(
υα − wα

� η
α
�

1− wα
�

, u2
α

)}
, (6)

where υχ, χ = r and α, are the prespecified values for the mean constraints and mixture

weights ψχ
� and wχ

� with constraints
∑Lχ

�=1 ψ
χ
� = 1 and 0 < ψχ

� , w
χ
� < 1. We fix the num-

ber of components Lχ and variances u2
χ for χ = r, α. The mixture components in (5)

and (6) are convex combinations weighted by wr
� and wα

� , respectively. The mixture-of-
mixtures formulation encompasses a wide class of distributions, such as multi-modal and
skewed distributions. The substantial flexibility of the prior is in contrast with inflexible
plug-in estimates of normalizing constants, and this flexibility improves estimation of
gtkj and (γj ,βj). Following Lee and Sison-Mangus (2018), we take an empirical ap-
proach and use observed counts to specify the values of the mean constraints υr and υα.
We set υr to the mean r′tk = log(r̃tk), where r̃tk =

∑
j Ytkj/

∑
tkj Ytkj , and υα to the

mean of α′
0j , where α

′
0j = log( 1

N

∑
tk Ytkj/r̃tk). The particular specification of υr and υα

does not preclude the use of other estimates for the scaling factors. Alternative methods
can be used to empirically estimate the mean constraints of scaling factors, for example,
maximum likelihood estimates (MLEs) or quantiles in Witten (2011). In the absence of
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prior information an empirical approach can yield sensible parameter estimates (Casella,
1985). Alternatively, the mean constraint can be set to 0 as in Li et al. (2017), which
can be interpreted as no scaling adjustment on average, or if some prior information is
available, priors can be placed on υr and υα to avoid potential problems with empirical
Bayesian approaches (e.g., Scott and Berger (2010)). Our sensitivity analysis to the
specification of υr and υα shows robustness of the model in estimating parameters of

interest βjp as well as gtkj ; details are in Section 3. We finally let wχ
�

iid∼ Be (awχ , bwχ)

with fixed awχ and bwχ , ηχ�
iid∼ N

(
υχ, b

2
ηχ

)
with fixed b2ηχ , and ψχ

� ∼ Dir(aψχ) with fixed
aψχ for χ = r and α.

In the ocean microbiome data the samples were collected over time and the baseline
mean count gtkj of OTU j may be dependent over time. We model temporal dependence
in the baseline mean counts by letting αtj change over time. We use a process convolution

model (Higdon, 2002) and let αtj =
∑M

m=1 K(t − um)θmj . The process convolution
model provides a good approximation to a continuous underlying process without a large
burden in computation (Lee et al., 2005). Accounting for the dependence structure in
temporally adjacent samples can further enhance the estimation of γj and βj . We place
the knots um, m = 1, . . . ,M on a uniform grid spanning the times when the samples
were collected, [−T ′, tn + T ′] with T ′ > 0. We use a Gaussian kernel N(0, τ2j ) for K(·),
and following Xiao (2015), fix the variance/range parameter at 2n/M . Finally, we place
independent normal priors centered at zero on the convolution component coefficients,

θmj
iid∼ N(0, τ2j ), with τ2j

iid∼ IG(aτ , bτ ).

We assume OTU specific overdispersion parameters sj
iid∼ Log-Normal(h, κ2), with

h ∼ N(ah, b
2
h) and κ2 ∼ IG(aκ, bκ), where ah, b

2
h, aκ and bκ are fixed hyperparameters.

NGS data does not have enough information for precise estimation of individual sj and
the hierarchical model can yield improved estimates.

2.3 Posterior Computation

To aid in the posterior computation, as is common in finite mixture models, we intro-
duce auxiliary variables (crtk, λ

r
tk) and (cαj , λ

α
tk), which indicate a mixture component for

rtk and α0j in (5) and (6), where cχtk ∈ {1, . . . , Lχ} and λχ
tk ∈ {0, 1}, χ = r, α. Similar

to γjp, we define the distribution of rtk and α0j conditional on the auxiliary vari-
ables. Let θ = {s,α0,θm,β,γ,π0,π1, h, κ

2, r̃,ψr,ηr,wr, cr,λα,ψα,ηα,wα, cα,λα, ι}
denote the vector of all unknown parameters. In the ocean microbiome data, some of
the categorical covariates were missing at random for some samples. For missing values
we assume that the categories are a priori equally likely and impute their values during
posterior simulation. Let Xmiss and Xobs denote the missing categorical covariates and
observed covariates, respectively, so that X = {Xobs, Xmiss} a n× P matrix of covari-
ates. The joint posterior probability model of parameters under the proposed model
is

P(θ,Xmiss | Y ,Xobs) ∝ P(Y | X,θ)P(θ, Xmiss),

where Y denotes a N × J matrix of OTU counts. We use standard MCMC methods
to implement posterior inference on the parameters. Usual MCMC posterior simulation
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proceeds by iteratively updating each of the parameters conditional on the currently
computed values of all other parameters. In addition, we do a joint update of βjp and
γjp through the Metropolis-Hastings algorithm for better mixing.

We assessed convergence and mixing of posterior MCMC simulation and found no
evidence of practical convergence problems for the simulation examples and the data
analysis in Section 3 and Section 4. Details of the posterior simulation are in Sup-
plementary Section 1 (Shuler et al., 2019). In the supplementary, we also include full
conditional derivations and some suggestions to improve mixing and convergence. An
R package, anlpsb, is also available from https://github.com/kurtis-s/anlpsb.

3 Simulation Studies

Data Simulation We performed simulation studies to assess the performance of the
proposed ANLP-SB model and compared it to alternative models. We assumed J = 200
OTUs. We used time points ti, i = 1, . . . n, the number of replicates Ki and some co-
variates from the ocean microbiome dataset described in Section 4. Like the ocean
microbiome dataset, the simulated data has n = 54 time points and total number of
samples N =

∑
i Ki = 150. We included three continuous covariates, x1 (silicate), x2

(water temperature) and x3 (chlorophyll), and created binary indicator variables for
two categorical covariates, the Alexandrium (Ax) abundance level and the domoic acid
(DA) concentration level. Using the “none” category as the reference category, x4 − x6

are binary indicators for low, medium, and high abundance levels of Ax, respectively;
and x7 − x10 for low, medium, high, and very high concentration levels of DA, respec-
tively. Using these covariates results in P = 10. For missing values of Ax, we randomly
generated a category for the simulation truth. For the simulation studies and the ocean
microbiome data analysis in the following section, the continuous covariates were stan-
dardized to have mean 0 and variance 1 before applying the model, as is common in
other variable selection techniques. In the ocean microbiome data, covariates were mea-
sured in different units (e.g., silicate in μg and water temperature in degree Celsius),
and the means and standard deviations of the raw values greatly vary across covariates.
The standardization can prevent covariates from being included or discarded purely
as a consequence of scale. In our model, common hyperpriors for ιp and σp are used
for all p, and use of unstandardized covariates may require more complicated hyper-
priors. We used the ocean microbiome data to set rTR

tk and αTR
0j . We used the OTU

counts from the ocean microbiome dataset and computed r′tk, and α′
0j as defined in

Section 2. rTR

tk were then set by randomly permuting {r′tk; i = 1, . . . , n, k = 1, . . . ,Ki},
and αTR

0j was specified by drawing a random sample of size J = 200 from {α′
0j}. We

simulated π�,TR

p0
iid∼ Be (10, 10) and πTR

p1
iid∼ Be (5, 10). We then let γTR

jp = 0, 1 or 2

with probabilities, π�,TR
p = (π�,TR

p0 , (1− π�,TR

p0 )πTR
p1 , (1− π�,TR

p0 )(1− πTR
p1 )). We generated

σ2
p
TR iid∼ Unif(1/2, 1) and ιTR

p
iid∼ Unif(1/10, 3/10). We then simulated βTR

jp conditional
on γTR

jp ; if γTR
jp = 0, let then βTR

jp = 0. For the cases of γTR
jp �= 0, we generated βTR

jp

from the normal distributions with mean 0 and variance σ2,TR
p truncated from below

at ιTR
p σTR

p if γTR
jp = 1 and from above at −ιTR

p σTR
p if γTR

jp = 2. We induced depen-
dence across samples in an OTU using a linear combination of trigonometric functions,

https://github.com/kurtis-s/anlpsb
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αTR
tj = Aj sin

(
2π
T hjati − aj

)
+Bj sin

(
2π
T hjbti − bj

)
, 0 ≤ t ≤ T . The amplitudes, Aj and

Bj , and the frequencies, hja and hjb, were iid draws from Unif(1, 2) and the phase offsets,
aj and bj iid draws from Unif(0, T ). We generated OTU specific over-dispersion param-

eters from sTR
j

iid∼ Log-Normal
(
−1/2, 1/102

)
. Finally, OTU counts were drawn from

Ytkj | μTR

tkj , s
TR
j

indep∼ NB(μTR

tkj(xt), s
TR
j ), where log(μTR

tkj(xt)) = rTR

tk +αTR
0j +αTR

tj +x′
tβ

TR
j .

Posterior Inference To fit the proposed model, we fix the hyperparameters as follows;
let aσ = 1, bσ = 1, aι = 2.5, bι = 10, aπ0 = 1, bπ0 = P , aπ1 = 5, and bπ1 = 5.
For the prior on rtk, α0j and αtj , we let ar

φ = 1, arw = 0.5, brw = 0.5, u2
r = 0.1,

b2ηr = 0.3, aα
ψ = 1, aαw = 0.5, bαw = 0.5 and b2ηα = 1, hyperparameters for αtj , aτ = 1

and bτ = 1. We set the number of knot points to M = 70, and the mixture truncation
levels to Lr = Lα = 50. For the prior on over-dispersion parameter sj , we set ah = −10,
b2h = 100, aκ = 10−5 and bκ = 10−5. We initialized θmj and βjp using observed ytkj . We
generated initial values for σ2

p by taking the variance of the initial values for βjp. We
ran the MCMC simulation over 50,000 iterations, discarding the first 10,000 iterations
as initial burn-in and choosing every fifth sample as thinning. Assessment of MCMC
simulation convergence is discussed in Supplementary Section 2.

Figure 3(a) and (b) show histograms of posterior estimates of d̂jp = P̂(γjp = γTR
jp | Y ),

the probabilities that βjp is correctly selected and its effect direction identified for
selected covariates x1 (continuous) and x5 (binary). Recall that γjp takes a value of
{0, 1, 2} representing no, positive, and negative effects. The histograms have a high
spike near 1 indicating that ANLP-SB identifies important covariates with their true
effect direction with high accuracy. d̂jp tends to be closer to 1 for continuous covariates,
while less concentrated around 1 for binary covariates due to small counts for each level.
Figure 3(c) and (d) compare posterior mean estimates β̂jp of βjp to their true values
βTR
jp with posterior 95% credible interval estimates. The plots show that the model also

provides good estimates of βjp. Similar to d̂jp, β̂jp is closer to βTR
jp with narrower interval

estimates for the continuous covariates. Supplementary Figures 1 and 2 show histograms
of d̂jp and plots of β̂jp versus βTR

jp for all covariates. We next compare posterior estimates
ĝtkj of the baseline mean counts to their true values. Supplementary Figure 3(a) shows
that gtkj are well estimated, which enables the model to produce good estimates of γjp
and βjp. Recall that terms rtk, α0j and αtj in gtkj are not identifiable. Supplementary
Figures 3(b)–(f) compare the estimates of rtk, α0j and αtj to the true values. From the
figures, the model recovers the parameters only up to a scaling factor and does a good
job of capturing the dependence across samples in the truth. In addition, we performed
sensitivity analysis to the specification of values of some parameters including (aι, bι),
(aσ, bσ), υr, υα and M . We found that any reasonable choice of those fixed parameters
has little impact on the posterior inference, showing robustness of our model. Details of
the sensitivity analysis are summarized in Supplementary Section 2.

We further assessed the performance of our model by considering variable selection
results from applying the model to 100 replicated datasets. For each dataset, we used
the posterior distribution of γjp and computed the Matthews correlation coefficient
(MCC), accuracy (ACC), area under the receiver operating curve (AUC), Brier score
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Figure 3: [Simulation 1] Panels (a) and (b): Histograms of the posterior estimates of

d̂jp = P̂(γjp = γTR
jp ) for x1 (Silicate) and x5 (low concentration of Alexandrium). Panels

(c) and (d): Posterior means of the regression coefficients β̂jp versus their true values
βTR
jp for x1 (Silicate) and x5 (low concentration of Alexandrium). The dashed blue lines

show 95% posterior credible intervals, and the solid red lines are 45 degree reference
lines.

(Brier, 1950), and F1 score. MCC is a combined measure of overall variable selection
performance that accounts for an unbalanced number of true positive and false positive
cases. MCC ranges between −1 and 1, with MCC = 1 indicating perfect selection
performance. MCC = 0 is expected under random selection, and MCC = −1 indicates
perfect disagreement between the model’s selections and the truth. MCC is defined as

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
,

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and
false negatives, respectively. The Brier score is a probability score metric for categorical

prediction, defined as BS = 1
J×P

∑
jpq

(
ẑjpq − I(γTR

jp = q)
)2 ∈ [0, 1], where ẑjpq is the

posterior probability that γjp = q, q ∈ {0, 1, 2}. The Brier score is a proper scoring rule
(Gneiting and Raftery, 2007), and a lower Brier score indicates better performance.
The F1 score is a metric for binary classification defined as the harmonic mean of the
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Model MCC ACC AUC Brier Score F1

ANLP-SB 0.615 (0.049) 0.802 (0.023) 0.885 (0.024) 0.287 (0.038) 0.786 (0.026)
ALP-SB 0.302 (0.038) 0.609 (0.030) 0.781 (0.023) 0.546 (0.049) 0.712 (0.027)
SLP-SB 0.295 (0.038) 0.606 (0.029) 0.774 (0.021) – 0.710 (0.027)

BayesReg 0.539 (0.040) 0.744 (0.026) 0.800 (0.020) – 0.678 (0.028)
edgeR-L -0.001 (0.028) 0.499 (0.015) 0.498 (0.017) – 0.443 (0.028)
edgeR-Q 0.000 (0.029) 0.500 (0.015) 0.498 (0.018) – 0.472 (0.026)
BhGLM 0.227 (0.049) 0.601 (0.026) 0.632 (0.028) – 0.488 (0.034)

(a) Variable Selection

Model
RMSE

DIC LPML
βjp π�

p0 gtkj
ANLP-SB 0.279 (0.023) 0.092 (0.030) 0.328 (0.043) 240,430 (6331) -4.011 (0.105)
ALP-SB 0.298 (0.018) 0.282 (0.033) 0.341 (0.017) 240,525 (6335) -4.013 (0.106)
SLP-SB 0.303 (0.015) 0.281 (0.032) 0.353 (0.021) 240,554 (6333) -4.013 (0.106)

BayesReg 0.302 (0.016) – 0.356 (0.031) 240,688 (6356) -4.020 (0.107)
edgeR-L 0.873 (0.030) – – – –
edgeR-Q 0.864 (0.028) – – – –
BhGLM 0.979 (0.071) – – – –

(b) Parameter Estimation and Model Fit

Table 1: [Simulation 1: Comparison] Performance metric averages over 100 simulated
datasets with standard deviations in parenthesis. The best performances are in bold.

proportion of true positives among “selected” covariates (also called precision) and the
proportion of “selected” covariates among true positive covariates (also called recall).
The F1 score ranges between 0 and 1, with a higher score indicating better performance.
For MCC, AUC and F1, we identified covariates as selected if their posterior probability
of (γjp = 0) was less than 0.5. Results from ANLP-SB are summarized in the first row
of Table 1(a), where the numbers are averages over the 100 datasets with standard
deviations in parenthesis. The scores show ANLP-SB performs well in terms of variable
selection and in terms of identifying effect directions.

Comparison We compared the performance of ANLP-SB based on the 100 simulated
dataset to alternative models. We include three Bayesian models, sparse regression
models with the ALP in (4) (called ALP-SB) and with the symmetric LP for βjp (called
SLP-SB) and BayesReg in Lee and Sison-Mangus (2018). For SLP-SB, we assumed

equal probability for effect directions, γjp
indep∼ Ber(π�

p0) and βjp | γjp = 1
indep∼ N(0, σ2

p)
while letting βjp = 0 for γjp = 0. BayesReg assumes Laplace priors for βjp for more
shrinkage of the coefficients of insignificant covariates towards zero. We also include the
likelihood-based methods edgeR in Robinson et al. (2010) (one of the popular models in
practice for NGS data analysis) and the generalized linear regression model with mixed
effects (called BhGLM) in Zhang et al. (2017), for comparison. Both methods assume
a negative binomial likelihood and use a generalized linear model to accommodate
covariate effects similar to the ANLP-SB model. edgeR normalizes raw counts using
the trimmed mean of M-values normalization method (Robinson and Oshlack, 2010)
to adjust library sizes. It estimates OTU specific overdispersion parameters prior to
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analysis through an empirical Bayes approach and uses these estimates to fit the model.
edgeR does not explicitly handle dependence structure among samples such as temporal
dependence, and we included a term linear in time (edgeR-L) and terms linear and
quadratic in time (edgeR-Q) as additional covariates. BhGLM uses the total counts
for library size adjustment and induces dependence in samples with shared random
effects. The Bayesian comparators hierarchically combine J regression problems similar
to ANLP-SB, but edgeR and BhGLM separately analyze each of the OTUs. R package
BhGLM and Bioconductor package edgeR are available for those models. Because edgeR
and BhGLM do not handle missing covariates, the true covariate values were used in
their simulations.

Under each of the comparators, we computed MCC, ACC, AUC, Brier scores and
F1. The results are summarized in Table 1(a). BayesReg, edgeR, and BhGLM do not
explicitly perform variable selection. For BayesReg, we used posterior 95% credible in-
tervals for selection. We considered a variable “selected” if its posterior 95% credible
interval did not include zero. For edgeR and BhGLM, selection was performed using
p-values with the multiple testing correction of Benjamini and Hochberg (1995) at an
α level of 0.05. Brier scores are applicable only for ANLP-SB and ALP-SB, which have
a ternary indicator γjp. The results show that ANLP-SB outperforms the comparators
under all metrics. In particular, comparison of ANLP-SB to ALP-SB shows that the
performance in variable selection can be greatly improved by the NLP. We also com-
puted estimates of βjp, gtkj , and π�

p0, and used them to evaluate root-mean-square error

(RMSE) based on the 100 datasets, e.g.,
√∑

jp(β̂jp − βTR
jp )

2/(100JP ). Columns 1–3 of

Table 1(b) show that the model with the ANLP also provides better estimates of the pa-
rameters, especially for the overall sparsity parameter π�

p0. For more comparison among
the Bayesian models, the deviance information criterion (DIC) (Spiegelhalter et al.,
2002) and log pseudo marginal likelihood (LPML) (Gelfand et al., 1992; Gelfand and
Dey, 1994) are computed. DIC measures posterior prediction error based on deviance
penalized by model complexity, similar to the Akaike information criterion, where lower
values are preferable. LPML is a metric based on cross validated posterior predictive
probability with higher values indicating a better model fit. It is defined as the sum
of the logarithms of conditional predictive ordinates (CPOs) (Geisser and Eddy, 1979;
Geisser, 1993). Columns 4–5 of Table 1(b) show DIC and LPML averaged over the
replicated datasets with the standard deviation in parenthesis. DIC and LPML indicate
that ANLP-SB provides a better fit to the data than the competing Bayesian models.

Additional Simulations We further examined the performance of our model through
additional simulation studies, Simulations 2–8. In Simulations 2–3, we kept most of the
simulation set-up used in Simulation 1, including the specification of x, rTR

tk and αTR
0j .

In Simulation 2, we assumed that truly irrelevant covariates have negligible effect sizes

rather than no effect, that is, βTR
jp

indep∼ N(0, (ιp/6)
2) for βjp with γTR

jp = 0. The results are
summarized in Supplementary Table 2. ANLP-SB obtains good parameter estimates,
especially for γjp and π�

p0. It outperforms the competing models, particularly in terms
of variable selection, and provides better model fit. For Simulation 3, we simulated the
baseline counts from a model different from the assumed model. For this simulation we
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assumed no temporal dependence in the truth and generated αTR
tj

iid∼ N(0, (2/3)2). Sup-
plementary Table 3 shows that ANLP-SB recovers good estimates of the associations
between the covariates and OTU abundances even when the assumed model for the base-
line counts is violated. The comparison shows that our model outperforms the competing
models. Simulations 4–8 investigate the performance of ANLP-SB in higher dimensional
settings. We increased the values of J , P , n and N and compared its performance to that
of the competing models. The results in Supplementary Tables 5–9 show that the ANLP-
SB is well-suited for scaling up to higher dimensional settings. ANLP-SB performs fa-
vorably relative to the competing models especially for variable selection. More results
of the additional simulations, including run-times, are in Supplementary Section 3.

4 Ocean Microbiome Data Analysis

In this section, we summarize our analyses of the ocean microbiome dataset in Lee
and Sison-Mangus (2018). Bacterial RNA samples were collected at a total of 54 time
points between April 2014 and November 2015 with two or three replicates at a time
point, resulting in N = 150 samples. Microbial 16s rRNA in the samples was sequenced
and a 39,823×150 OTU table was obtained after post-processing of the sequences. We
removed OTUs having smaller than 5 counts on average and included J = 263 OTUs for
our analysis. Figure 1(c) shows a heatmap of the OTU counts in our ocean microbiome
data.

The dataset also has continuous and categorical covariates recorded at the same
time points. Continuous variables include ammonia (NH4), silicate (Si), nitrate (N),
phosphate (P), temperature (T) and chlorophyll (Chl); and categorical variables include
abundance levels of Alexandrium (Ax), Dinophysis (Dp) and Pseudo-nitzschia (Pn), and
the domoic acid (DA) concentration level. Binary indicators were created to represent
low (�), medium (m), high (h) and very high (H) levels of the categorical variables with
the ‘none’ category used as the reference group. In total, we have P = 20 covariates.
Supplementary Table 10 lists all covariates. For more details of the dataset, see Lee and
Sison-Mangus (2018) and Sison-Mangus et al. (2016). The primary goal of this study
is to identify important covariates related to changes in OTU abundance levels and to
quantify the effects of those identified covariates.

We specified hyperparameters similar to those in the simulations for the Bayesian
models. The MCMC simulation was run over 125,000 iterations, with the first 25,000
iterations discarded as burn-in and every fifth sample kept as thinning and used for
inference. It took about 21 minutes for 1,000 iterations on a 3.20GHz Intel i5-6500 pro-
cessor. Figure 4 summarizes posterior inferences on overall sparsity parameter π�

p0, and
on conditional probability πp1 that a covariate has a positive effect given that it has a
significant effect. Panel (a) shows that low, medium, and very high DA concentration
levels have estimates of π�

p0 smaller than 0.5, implying that they are significantly related
to OTU abundance with probability greater than 0.5. From panel (b), the low and very
high concentration levels of DA are associated with depressed OTU abundance with
larger probability when they are identified as significant. DA is a chemical secreted by
toxic Pseudo-nitzschia species whose ecological role is currently unknown. However, pre-
vious reports suggest that it could have antibacterial activities (Bates et al., 1995). Both



K. Shuler, M. Sison-Mangus, and J. Lee 573

Figure 4: [Ocean Microbiome Data] Panel (a): Boxplots of the posterior distributions
of π�

p0, the probability of a non-zero effect on OTU abundance. Panel (b): Boxplots the
posterior distributions of πp1, the conditional probability of a positive effect direction
given the covariate has a non-zero effect.

our preliminary laboratory and ocean studies suggest that it can depress the abundance
and growth of some bacterial taxa, while promoting others (Sison-Mangus et al. unpub-
lished). Panel (a) also indicates that silicate is identified as irrelevant with probability
π̂�
0 = 0.67, and when it is significant, its effect is positive with probability π̂1 = 0.75. Sili-

cate concentration is normally associated with diatom growth as this nutrient is required
for silica frustule formation. The breakdown of diatom organic carbon and silicate matter
is enhanced by particular groups of bacteria from Flavobacteriales (Bacteroidetes) and
Alteromonadales family (Gamma-proteobacteria) (Bidle and Azam, 2001). Moreover,
bacterial production is intimately tied to diatom primary production, which biologi-
cally explains positive effects of silicate to abundance of some bacterial OTUs.

Figure 5 has simplex plots of a probability vector ẑjp = (ẑjp0, ẑjp1, ẑjp2) with ẑjpq
being a posterior probability estimate that γjp = q, q ∈ {0, 1, 2} for silicate and for the
very high concentration level of DA. Circles represent individual OTUs. OTUs having no
association with a covariate lie in the bottom-left corner of the plot, those with negative
relationships in the bottom-right corner, and those with positive relationships at the
apex. Similar to Figure 4(b), the figure indicates silicate tends to not be associated with
abundance for many OTUs, while very high DA concentration tends to be negatively
associated with abundance for many OTUs. Supplementary Figure 7 has simplex plots
for all covariates. Supplementary Figure 8 illustrates posterior inference of βjp and
P(γjp = 2) for the OTUs belonging to class Gamma-proteobacteria. The figure shows
that many of those OTUs have negative associations with DA, especially with the very
high concentration level of DA, compared to the reference level, ‘none’. The findings
were further validated through a lab experiment using a cultured Gamma-proteobacteria
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Figure 5: [Ocean Microbiome Data] Simplex plots of the posterior means
ẑjp = (ẑjp0, ẑjp1, ẑjp2) of γjp = 0, (no effect), γjp = 1, (positive effect) and γjp = 2, (neg-
ative effect). The colors, blue, red and green, indicate no relationship, a negative rela-
tionship, and a positive relationship with OTU abundance, respectively.

strain. This bacterial isolate was exposed to different concentrations of DA for 24 to 48
hours followed by growth measurement (Optical Density at 600 nm). We found that the
bacteria was significantly affected by DA at concentrations ranging from 25 to 50 μg/ml,
suggesting that DA can indeed inhibit the growth of bacteria (Supplementary Figure 9).

For comparison, we fit the alternative Bayesian models to the dataset. Posterior in-
ferences on π�

p0 and πp1 under ALP-SB and SLP-SB are summarized in Supplementary
Figure 11. Under those models, the posterior distributions of π�

p0 are mostly concen-
trated in the region between 0.2 and 0.4 for all covariates. ANLP-SB encourages a more
parsimonious fit, which is desirable as a sparser fit may better elucidate the biological
mechanisms at play. Supplementary Table 11 shows DIC and LPML for the Bayesian
models. Both criteria indicate that ANLP-SB gives a better fit to the data.

5 Discussion

We have presented a Bayesian sparse multivariate regression model for microbiome data
analysis. We extended NLPs to allow asymmetric probabilities for a coefficient being
negative/positive and used the extended ANLPs as a prior for regression coefficients
to yield good performance in identification of important covariates related to changes
in OTU abundances. By assuming common threshold parameters and overall sparsity
parameters, the proposed method makes use of information from all OTUs and yields
improved statistical inferences on all OTUs. Taking a probabilistic modeling approach,
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our model propagates uncertainties at all levels and provides an assessment of the un-
certainty of the selection process. In addition, ANLP-SB simultaneously adjusts for
differences in library sizes and accounts for dependence structure in samples via process
convolutions.

Our simulation studies and analysis of the ocean microbiome data show that uti-
lizing the ANLPs greatly improves posterior inferences in terms of variable selection
and in terms of identifying the direction of relationships between covariates and OTU
abundance. In the simulations, ANLP-SB showed robustness to mild violations of the
modeling assumptions on effect sizes of irrelevant variables and on dependence structure
in samples. ANLP-SB compared favorably to two Bayesian models that used an ALP
and an SLP, and to the likelihood-based methods, edgeR and BhGLM. ANLP-SB also
appears to yield improved parameter estimates, both at the community and individual
OTU levels.

Our ANLP-SB model can be used for analyses of any count data in various fields
such as biomedical sciences and economics and can be further extended to accommo-
date more complex data structures. For example, interaction effects between OTUs can
be modeled through graphical models. In particular, Gaussian graphical models use a
covariance matrix to represent conditional interdependencies between OTUs and can
provide a convenient framework for analyzing and interpreting relationships between
OTUs (Dempster, 1972). These are potential areas for future research.

Supplementary Material

Supplementary Materials: Bayesian Sparse Multivariate Regression with Asymmetric
Nonlocal Priors for Microbiome Data Analysis (DOI: 10.1214/19-BA1164SUPP; .pdf).
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